BHARAT SCHOLL OF BANKING VOLUME AND SURFACE AREAS

- Q1. Surface area of a cube is 600 cm². Find out the length of its diagonal.
- (a) 15_V3
- (b) 12_V3
- (c) 10_V3
- (d) 11√3
- (e) None of these

Sol. Surface area of a cube = $6 \times (\text{side})^2$

$$: 6 \times (side)^2 = 600$$

$$\Rightarrow$$
 (Sides) 2 = 100

$$\Rightarrow$$
 Side = $\sqrt{100}$ = 10 cm

$$\therefore$$
 Diagonal of the cube = $\sqrt{3} \times$ side

$$=\sqrt{3} \times 10 = 10\sqrt{3}$$
 cm.

- Q2. A roller is 120 cm long and has diameter 84 cm. If it takes 500 complete revolutions to level a play ground, then determine to cost of leveling at the rate of 30 paise per m^2 . (Use $\pi=22/7$)
- (a) Rs. 475.40
- (b) Rs. 375.45
- (c) Rs. 375.20
- (d) Rs. 475.20
- (e) None of these

S2. Ans.(d)

Sol.
$$r = \frac{84}{2} cm = \frac{21}{50} m$$
,
 $h = 120 cm = \frac{120}{100} m = \frac{6}{5} m$

The leveled area in one revolution of the roller

= curved surface =
$$2\pi rh$$

$$=2\times\frac{22}{7}\times\frac{21}{50}\times\frac{6}{5}$$
396

$$=\frac{396}{125}m^2$$
.

The levelled area in 500 revolutions

$$= \frac{396}{125} \times 500 = 1584 \, m^2.$$

The required cost of leveling = $\frac{30}{100} \times 1584$

- = Rs. 475.20
- Q3. The capacity of a tank, in the form of a cylinder, is 6160 m³. If the diameter of its base is 28 m, find out the cost of painting its inner curved surface at the rate of Rs. 2.8 per m².(Use $\pi = 22/7$

BHARAT SCHOLL OF BANKING VOLUME AND SURFACE AREAS

- (a) 2464
- (b) 2664
- (c) 3064
- (d) 2864
- (e) None of these
- S3. Ans.(a)

Sol. Radius of the base of the cylinder

= r = 14 m.

h = Depth of the tank

Capacity = Volume of the tank

$$=\pi r^2 h = 6160 m^3.$$

or,
$$\frac{22}{7} \times 14 \times 14 \times h = 6160$$
 :: $h = 10 m$.

T surface area = $2\pi rh = 2 \times \frac{22}{7} \times 14 \times 10$

- $= 880 m^2$
- : Cost of painting this curved surface
- $= 880 \times 2.80 = Rs. 2464$

- (a) 2:1
- (b) 3:1
- (c) 4:1
- (d) 5:1
- (e) None of these

S4. Ans.(d)

Sol.
$$\frac{\text{Total surface area}}{\text{Lateral surface area}} = \frac{2\pi r h + 2\pi r^2}{2\pi r h}$$
$$= \frac{2\pi r (h+r)}{2\pi r h} = \frac{h+r}{h} = \frac{20+80}{20} = \frac{5}{1} = 5:1.$$

- Q5. The diameter and slant height of a conical tomb are 20 m and 50 m, respectively. The cost of white washing its curved surface at the rate of 80 paise per m^2 is:
- (a) Rs. 2640
- (b) Rs. 1760
- (c) Rs. 26400
- (d) Rs. 17600
- (e) None of these

BHARAT SCHOLL OF BANKING VOLUME AND SURFACE AREAS

S5. Ans.(d)

Sol. Curved surface of the tomb

$$=\pi rl = \frac{22}{7} \times 14 \times 50 = 22000 m^2$$

- : Cost of white washing
- = 22000 ×0.80 = Rs. 17600

Q6. The curved surface of a cylindrical pillar is 264 m² and its volume is 924 m² Taking π =22/7, find out the ratio of its diameter to its height:

- (a) 7:6
- (b) 6:7
- (c) 3 : 7
- (d) 7:3
- (e) None of these

S6. Ans.(d)

Sol. Curved surface of a pillar = $264 m^2$

or,
$$2\pi rh = 264 m^2$$

or,
$$rh = \frac{264 \times 7}{2 \times 22}$$

$$\therefore rh = 42 m^2 \qquad ...(1)$$

Again,
$$\pi r^2 h = 924 \, m^3$$

$$r^2h = \frac{924}{22} \times 7$$

$$r^2h = 294$$
 ...(2)

Dividing Equation (2) by Equation (1)

$$r = 7 m$$

$$\therefore h = \frac{42}{7} = 6 m$$

Hence, required ratio = 7×2 : 6 = 7 : 3

Q7. If the surface area of a sphere is 346.5 cm², then its radius is [taking π =22/7]

- (a) 7 cm
- (b) 3.25 cm
- (c) 5.25 cm
- (d) 9 cm
- (e) None of these

BHARAT SCHOLL OF BANKING **VOLUME AND SURFACE AREAS**

S7. Ans.(c)

Sol. Surface area of sphere = $4\pi r^2$ Now, according to the question,

$$4 \times \frac{22}{7} \times r^2 = 346.5$$

$$\Rightarrow 4 \times 22 \times r^2 = 346.5 \times 7$$

$$\Rightarrow r^2 = \frac{346.5 \times 7}{4 \times 22} = 27.5625$$

$$\Rightarrow r = \sqrt{27.5625} = 5.25 \, cm$$

Q8. The base of a right prism is an equilateral triangle. If the lateral surface area and volume is 120 cm² and 40v3 cm³, respectively, then the side of base of the prism is:

- (a) 4 cm
- (b) 5 cm
- (c) 7 cm
- (d) 40 cm
- (e) None of these

S8. Ans.(a)

Sol. Lateral surface area of prism = $3 \times \text{side} \times \text{height}$

∴
$$3 \times \text{side} \times \text{height} = 120$$

⇒ Side ×height = $\frac{120}{3} = 40 \text{ cm}^2$...(

Volume of prism = Area of base × height

$$\Rightarrow 40\sqrt{3} = \frac{\sqrt{3}}{4} \times \text{side}^2 \times \text{height}$$

$$\Rightarrow \frac{40\sqrt{3} \times 4}{\sqrt{3}} = side^2 \times height$$

Dividing equation (2) by (1), we get

Side =
$$\frac{160}{40}$$
 = 4 cm

Q9. If a right circular cone of height 24 cm has a volume of 1232 cm³, then the area (in cm²) of curved surface is

...(2)

- (a) 550
- (b) 704
- (c) 924
- (d) 125²
- (e) None of these

BHARAT SCHOLL OF BANKING VOLUME AND SURFACE AREAS

S9. Ans.(a)

Sol. Let, the radius of cone be r cm.

Now, according to the question,

$$\frac{1}{3} \times \frac{22}{7} \times r^2 \times 24 = 1232$$

$$\therefore r^2 = \frac{1232 \times 3 \times 7}{22 \times 24} = 49$$

$$\therefore r^2 = \frac{1232 \times 3 \times 7}{22 \times 24} = 49$$

$$\therefore r = \sqrt{49} = 7 \ cm$$

$$\therefore \text{ Area of the curved surface} = \pi r l = \pi r \sqrt{h^2 + r^2}$$
$$= \frac{22}{7} \times 7\sqrt{24^2 + 7^2} = 22 \times 25 = 550 \ cm^2$$

- (a) 624.26 cm³
- (b) 622.36 cm³
- (c) 625.56 cm³
- (d) 623.20 cm³
- (e) None of these

\$10. Ans.(b)

Sol. If the radius of the base of cup be r cm, then $2\pi r = \pi \times 14$

$$\Rightarrow r = 7 \text{ cm}$$

Slant height = 14 cm

$$\therefore \text{Height} = \sqrt{14^2 - 7^2} = \sqrt{21 \times 7} = 7\sqrt{3} \text{ } cm$$

$$\therefore \text{ Capacity of cup} = \frac{1}{3}\pi r^2 h$$

$$= \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \sqrt{3} = 622.36 \text{ cm}^3.$$