BHARAT SCHOOL OF BANKING PROBLEMS BASED ON TRAINS

Question 1

A train of length 150 meters can cross a bridge in 30 seconds when travelling at a speed of $40 \mathrm{~km} / \mathrm{hr}$. Then what is the length of the bridge?
a) 180 m
b) 182 c$) 183 \mathrm{~d}) 185$

Answer: c)183

Solution:

Let the length of the bridge be X .
The speed of the train $=40 \mathrm{~km} / \mathrm{hr}=40 \times 5 / 18 \mathrm{~m} / \mathrm{sec}=100 / 9 \mathrm{~m} / \mathrm{sec}$.
The time taken to cross the bridge $=30$ seconds.
Then, $[150+X] / 30=100 / 9$
$150+X=3000 / 9$
$X=3000 / 9-150=1650 / 9=183.33$
Hence the answer is 183 m .

Question 2

A train crosses a bridge and a bike standing on the bridge in 40 seconds, 25 seconds respectively. What is the length of the bridge if the speed of the train is $50.4 \mathrm{~km} / \mathrm{hr}$?
a) 180 m
b) 210 c$) 183 \mathrm{~d}) 185$

Answer: b)210
Solution:
Given that,
The speed of the train $=50.4 \mathrm{~km} / \mathrm{hr}=50.4 \times 5 / 18 \mathrm{~m} / \mathrm{sec}=14 \mathrm{~m} / \mathrm{sec}$
The train crosses a bike(standing object) in 25 seconds.Then,
Length of the train $=(14 \times 25) \mathrm{m}=350 \mathrm{~m}$.
Now, let the length of the bridge is X m .
the train crosses the bridge in 40 seconds.

BHARAT SCHOOL OF BANKING PROBLEMS BASED ON TRAINS

Then, $(X+350) / 40=14$
$X+350=14 \times 40=560$
$X=210$
Hence the bridge is 210 m long.

Question 3

In what time a train 120 meters long travelling at a speed of $70 \mathrm{~km} / \mathrm{hr}$ crosses a cyclist who is at the speed $5 \mathrm{~km} / \mathrm{hr}$ in the direction opposite to the train?
a) 4.76 sec
b) 5.76 sec
c) 8.92 sec
d) 6.14 sec

Answer: b)5.76sec

Solution:
Given that the speed of the train and a cyclist is $70 \mathrm{~km} / \mathrm{hr}$ and $5 \mathrm{~km} / \mathrm{hr}$ respectively.
Then, the Speed of train relative to cyclist $=(70+5) \mathrm{km} / \mathrm{hr}=75 \mathrm{~km} / \mathrm{hr}=75 \times 5 / 18=$ 125/6 m/sec.

The time taken to cross the cyclist $=120 /(125 / 6)=120 \times 6 / 125=5.76 \mathrm{sec}$ hence the answer is 5.76 seconds.

Question 4

A train overtakes two bikes which are travelling at the speed of $25 \mathrm{~km} / \mathrm{hr}$ and $30 \mathrm{~km} / \mathrm{hr}$ in the same direction the train is moving and crosses them in 18 and 21 seconds respectively. Then the length of the train is:
a) 170 m
b) 175 m
c) 173 m
d) 185 m

Answer: b)175

Solution:
Let us convert the speed in the unit of $\mathrm{m} / \mathrm{sec}$
$25 \mathrm{~km} / \mathrm{hr}=25 \times 5 / 18=125 / 18 \mathrm{~m} / \mathrm{sec}$
and $30 \mathrm{~km} / \mathrm{hr}=30 \times 5 / 18=150 / 18 \mathrm{~m} / \mathrm{sec}$.
Let the length of the train be X metres and its speed by $Y \mathrm{~m} / \mathrm{sec}$

BHARAT SCHOOL OF BANKING PROBLEMS BASED ON TRAINS

Then the relative speed of the train and the bike with speed $125 / 18 \mathrm{~m} / \mathrm{sec}$ is $(\mathrm{Y}-$ 125/18)

And the relative speed of the train and the bike with speed $150 / 18 \mathrm{~m} / \mathrm{sec}$ is $(\mathrm{Y}-$ 150/18).

Then we can express the time taken to pass the bike as
$[\mathrm{X} /(\mathrm{Y}-125 / 18)]=18$ and $[\mathrm{X} /(\mathrm{Y}-150 / 18)]=21$
By Simplifying above we get, $\mathrm{X}=18 \mathrm{Y}-125$
and $\mathrm{X}=21 \mathrm{Y}-175$
Solving the eqns we get $Y=50 / 3$ and $X=175$.
Hence the length of the train is 175 m .

Question 5

A train 200 m long is moving with the speed of 50 km per hour. Find the time taken to pass a tree standing near the railway track.
a) $142 / 5$ seconds
b) 15 seconds
c) $161 / 2$ seconds d) 17 seconds

Answer: a)14 2/5 seconds

Solution:
Speed of the train $=50 \mathrm{~km} / \mathrm{hr}=50 \times 5 / 18 \mathrm{~m} / \mathrm{sec}=250 / 18 \mathrm{~m} / \mathrm{sec}$
Length of the train $=200 \mathrm{~m}$
Time taken to cross the tree $=200 /(250 / 18)=200 \times 18 / 250=72 / 5=14.4$ seconds Hence the answer is $142 / 5$ seconds.

Question 6

A train of length 80 m . If the speed of the train is $120 \mathrm{~km} / \mathrm{hr}$, then the time taken to cross a 150 m long wall is:
a) 5 seconds
b) 3 seconds
c) 7 secondsd)6 seconds

Answer: c)7 seconds

Solution:

BHARAT SCHOOL OF BANKING PROBLEMS BASED ON TRAINS

speed of the train $=120 \mathrm{~km} / \mathrm{hr}=120 \times 5 / 18 \mathrm{~m} / \mathrm{sec}=100 / 3 \mathrm{~m} / \mathrm{sec}$
Distance covered in passing the long wall $=(80+150)=230 \mathrm{~m}$
Time taken to cross the wall $=230 \times 3 / 100=6.9 \mathrm{sec}$
Hence the answer is 7 seconds(approximately)

Question 7

A bike and the train are running at a speed of $15 \mathrm{~km} / \mathrm{hr}$ and $70 \mathrm{~km} / \mathrm{hr}$. The length of the train is 200 m . Find the time taken by the train to cross the bike.
a) 11 seconds
b) 10 seconds
c) 9 seconds d)13seconds

Answer: d)13 seconds

Solution:
Speed of the train relative to bike $(70-15)=55 \mathrm{~km} / \mathrm{hr}=55 \times 5 / 18 \mathrm{~m} / \mathrm{sec}=275 / 18$ $\mathrm{m} / \mathrm{sec}$

Time taken to cross the bike $=$ time taken to cross 200 m at $275 / 18 \mathrm{~m} / \mathrm{sec}$
$=200 \times 18 / 275=8 \times 18 / 11=13.09$ seconds.
Hence the answer is 13 seconds(approximately)

Question 8

Find the approximate speed of a train which passes a tree in 12 seconds. Note that the length of the train is 264 m .
a) $79 \mathrm{~km} / \mathrm{hr}$
b) $80 \mathrm{~km} / \mathrm{hr}$
c) $84 \mathrm{~km} / \mathrm{hr}$
d) $74 \mathrm{~km} / \mathrm{hr}$

Answer : a) 79 km/hr

Solution:
Length of the train $=264 \mathrm{~m}$.
Time taken to pass the tree $=12$ seconds.
Speed of the train $=264 / 12 \mathrm{~m} / \mathrm{sec}=22 \mathrm{~m} / \mathrm{sec}=22 \times 18 / 5 \mathrm{~km} / \mathrm{hr}=79.2 \mathrm{~km} / \mathrm{hr}$.
Hence the answer is 79 km/hr.(approximately).

BHARAT SCHOOL OF BANKING PROBLEMS BASED ON TRAINS

Question 9

A train crosses a standing man in 3 seconds and moves at a rate of $120 \mathrm{~km} / \mathrm{hr}$. Find the length of the train.
a) 200 m
b) 98 m
c) 260 m
d) 100 m

Answer : d) $\mathbf{1 0 0}$ m

Solution :
Speed of the train $=120 \mathrm{~km} / \mathrm{hr}=120 \times 5 / 18 \mathrm{~m} / \mathrm{s}$.
$=100 / 3 \mathrm{~m} / \mathrm{sec}$.
Time taken to cross the standing man is 3 seconds.
Length of the train $=$ Speed of the train \times Time taken to cross the standing man
$=3 \times 100 / 3=100 \mathrm{~m}$.
Hence the train is 100 m long.

Question 10

A 480 m long train crosses a standing object in 12 seconds. Find the time taken by the train to cross a long wall of length 325 m .
a) 20 sec
b) 15 sec
c) 19 sec
d) 21 sec

Answer : a) $\mathbf{2 0} \mathbf{~ s e c}$

Solution :

Length of the train $=480 \mathrm{~m}$
Time taken to cross an object $=12$ seconds.
Speed of the train $=$ Length of the train $/$ Time taken to cross an object $=480 / 12 \mathrm{~m} / \mathrm{sec}$ $=40 \mathrm{~m} / \mathrm{sec}$.

Length of the wall $=325 \mathrm{~m}$
Time taken to cross the wall = (Length of the train + Length of the wall) / Speed of the train
$=(480+325 \mathrm{~m}) / 40$ seconds $=805 / 40=20.12$ seconds

BHARAT SCHOOL OF BANKING PROBLEMS BASED ON TRAINS

Hence the answer is 20 seconds.

