Q.1. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5?

Answer: Option D Explanation:

Here, $S = \{1, 2, 3, 4, ..., 19, 20\}.$

Let E = event of getting a multiple of 3 or $5 = \{3, 6, 9, 12, 15, 18, 5, 10, 20\}$.

÷	P(E) =	<u>n(E)</u>	9
			20

Q.2. A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?

Answer: Option A Explanation:

Total number of balls = (2 + 3 + 2) = 7.

Let S be the sample space.

Then, n(S) = Number of ways of drawing 2 balls out of 7

 $= {}^{7}C_{2} `$ = $\frac{(7 \times 6)}{(2 \times 1)}$ = 21.

Let E = Event of drawing 2 balls, none of which is blue.

 \therefore n(E) = Number of ways of drawing 2 balls out of (2 + 3) balls.

$$= {}^{5}C_{2}$$

= $\frac{(5 \times 4)}{(2 \times 1)}$
= 10.
∴ P(E) = $\frac{n(E)}{n(S)} = \frac{10}{21}$.

Q.3. In a box, there are 8 red, 7 blue and 6 green balls. One ball is picked up randomly. What is the probability that it is neither red nor green?

Answer: Option A Explanation:

Total number of balls = (8 + 7 + 6) = 21.

Let E = event that the ball drawn is neither red nor green

= event that the ball drawn is blue.

∴
$$n(E) = 7$$
.
∴ $P(E) = \frac{n(E)}{n(S)} = \frac{7}{21} = \frac{1}{3}$.

Q.4. What is the probability of getting a sum 9 from two throws of a dice?

B.
$$\frac{1}{8}$$

C. $\frac{1}{9}$

1

D. $\frac{1}{12}$

Answer: Option C Explanation:

In two throws of a dice, $n(S) = (6 \times 6) = 36$.

Let $E = event of getting a sum = \{(3, 6), (4, 5), (5, 4), (6, 3)\}.$

∴ P(E) =
$$\frac{n(E)}{n(S)} = \frac{4}{36} = \frac{1}{9}$$
.

Q.5.

Three unbiased coins are tossed. What is the probability of getting at most two heads?

Explanation:

Here $S = \{TTT, TTH, THT, HTT, THH, HTH, HHT, HHH\}$

Let E = event of getting at most two heads.

Then $E = \{TTT, TTH, THT, HTT, THH, HTH, HHT\}.$

$$\therefore P(E) = \frac{n(E)}{n(S)} = \frac{7}{8}$$

Q.6.Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?

Answer: Option B

Explanation:

In a simultaneous throw of two dice, we have $n(S) = (6 \times 6) = 36$. Then, $E = \{(1, 2), (1, 4), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 3), ($ 4), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 2), (5, 4), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

∴
$$n(E) = 27$$
.
∴ $P(E) = \frac{n(E)}{n(S)} = \frac{27}{36} = \frac{3}{4}$.

Q.7. In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:

Α. 46 25

Β.

117

C.
$$\frac{1}{50}$$

Answer: Option A Explanation:

Let S be the sample space and E be the event of selecting 1 girl and 2 boys.

Then, n(S) = Number ways of selecting 3 students out of 25

$$= {}^{25}C_3 `$$

$$= \frac{(25 \times 24 \times 23)}{(3 \times 2 \times 1)}$$

$$= 2300.$$

$$n(E) = ({}^{10}C_1 \times {}^{15}C_2)$$

$$= \left[10 \times \frac{(15 \times 14)}{(2 \times 1)} \right]$$

$$= 1050.$$

$$\therefore P(E) = \frac{n(E)}{n(S)} = \frac{1050}{2300} = \frac{21}{46}.$$

Q.8. In a lottery, there are 10 prizes and 25 blanks. A lottery is drawn at random. What is the probability of getting a prize?

D. $\frac{5}{7}$

Answer: Option C Explanation:

P (getting a prize) = $\frac{10}{(10 + 25)} = \frac{10}{35} = \frac{2}{7}$.

Q.9. From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?

Α.	$\frac{1}{15}$	
В.	<u>25</u> 57	
C.	<u>35</u> 256	
D.	$\frac{1}{221}$	

Answer: Option D Explanation:

Let S be the sample space.

Then, $n(S) = {}^{52}C_2 = \frac{(52 \times 51)}{(2 \times 1)} = 1326.$

Let E = event of getting 2 kings out of 4.

$$\therefore \ n(E) = {}^{4}C_{2} = \frac{(4 \times 3)}{(2 \times 1)} = 6.$$

$$\therefore \ P(E) = \frac{n(E)}{n(S)} = \frac{6}{1326} = \frac{1}{221}.$$

Q.10. Two dice are tossed. The probability that the total score is a prime number is:

A.
$$\frac{1}{6}$$

B. $\frac{5}{12}$

C. $\frac{1}{2}$

D.
$$\frac{7}{9}$$

Answer: Option B Explanation:

Clearly, $n(S) = (6 \times 6) = 36$.

Let E = Event that the sum is a prime number.

Then = { (1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, E 3), (5, 2), (5, 6), (6, 1), (6, 5) }

∴
$$n(E) = 15.$$

∴ $P(E) = \frac{n(E)}{n(S)} = \frac{15}{36} = \frac{5}{12}.$