BHARAT SCHOOL OF BANKING PROBABILITY

Q.1. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5 ?
A. $\frac{1}{2}$
B. $\frac{2}{5}$
C. $\frac{8}{15}$
D. $\frac{9}{20}$

Answer: Option D

Explanation:
Here, $S=\{1,2,3,4, \ldots, 19,20\}$.
Let $E=$ event of getting a multiple of 3 or $5=\{3,6,9,12,15,18,5,10,20\}$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{9}{20}$.
Q.2. A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?
A. $\frac{10}{21}$
B. $\frac{11}{21}$
C. $\frac{2}{7}$
D. $\frac{5}{7}$

Answer: Option A

Explanation:

Total number of balls $=(2+3+2)=7$.
Let S be the sample space.
Then, $n(S)=$ Number of ways of drawing 2 balls out of 7

$$
\begin{aligned}
& \text { BHARAT SCHOOLOFBANKING } \\
& ={ }^{7} C_{2} \\
& =\frac{(7 \times 6)}{(2 \times 1)} \\
& =21
\end{aligned}
$$

Let $E=$ Event of drawing 2 balls, none of which is blue.

$$
\begin{aligned}
\therefore n(E) & =\text { Number of ways of drawing } 2 \text { balls out of }(2+3) \text { balls. } \\
& ={ }^{5} C_{2} \\
& =\frac{(5 \times 4)}{(2 \times 1)} \\
& =10
\end{aligned}
$$

$$
\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{10}{21}
$$

Q.3. In a box, there are 8 red, 7 blue and 6 green balls. One ball is picked up randomly. What is the probability that it is neither red nor green?
A. $\frac{1}{3}$
B. $\frac{3}{4}$
C. $\frac{7}{19}$
D. $\frac{8}{21}$
E. $\frac{9}{21}$

Answer: Option A

Explanation:

Total number of balls $=(8+7+6)=21$.
Let $E=$ event that the ball drawn is neither red nor green

BHARAT SCHOOL OF BANKING PROBABILITY

$=$ event that the ball drawn is blue.
$\therefore n(E)=7$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{7}{21}=\frac{1}{3}$.
Q.4. What is the probability of getting a sum 9 from two throws of a dice?
A. $\frac{1}{6}$
B. $\frac{1}{8}$
C. $\frac{1}{9}$
D. $\frac{1}{12}$

Answer: Option C Explanation:
In two throws of a dice, $n(S)=(6 \times 6)=36$.
Let $E=$ event of getting a sum $=\{(3,6),(4,5),(5,4),(6,3)\}$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{4}{36}=\frac{1}{9}$.
Q.5.

Three unbiased coins are tossed. What is the probability of getting at most two heads?
A. $\frac{3}{4}$
B. $\frac{1}{4}$
C. $\frac{3}{8}$
D. $\frac{7}{8}$

BHARAT SCHOOL OF BANKING PROBABILITY

Explanation:

Here $S=\{T T T$, TTH, THT, HTT, THH, HTH, HHT, HHH $\}$
Let $\mathrm{E}=$ event of getting at most two heads.
Then $\mathrm{E}=\{\mathrm{TTT}, \mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}, \mathrm{THH}, \mathrm{HTH}, \mathrm{HHT}\}$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{7}{8}$
Q.6.Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{3}{8}$
D. $\frac{5}{16}$

Answer: Option B

Explanation:

In a simultaneous throw of two dice, we have $n(S)=(6 \times 6)=36$.
Then, $E=\{(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3$, 4),
$(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,2),(5,4),(5,6),(6$, 1),

$$
(6,2),(6,3),(6,4),(6,5),(6,6)\}
$$

$\therefore n(E)=27$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{27}{36}=\frac{3}{4}$.
Q.7. In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:
A. $\frac{21}{46}$
B. $\underline{25}$

BHARAT SCHOOL OF BANKING PROBABILITY

117

C. $\frac{1}{50}$
D. $\frac{3}{25}$

Answer: Option A

Explanation:

Let S be the sample space and E be the event of selecting 1 girl and 2 boys. Then, $n(S)=$ Number ways of selecting 3 students out of 25

$$
\begin{aligned}
& ={ }^{25} \mathrm{C}_{3} \\
& =\frac{(25 \times 24 \times 23)}{(3 \times 2 \times 1)} \\
& =2300 .
\end{aligned}
$$

$$
\begin{aligned}
n(\mathrm{E}) & =\left({ }^{10} \mathrm{C}_{1} \times{ }^{15} \mathrm{C}_{2}\right) \\
& =\left[10 \times \frac{(15 \times 14)}{(2 \times 1)}\right] \\
& =1050 .
\end{aligned}
$$

$$
\therefore P(E)=\frac{n(E)}{n(S)}=\frac{1050}{2300}=\frac{21}{46} .
$$

Q.8. In a lottery, there are 10 prizes and 25 blanks. A lottery is drawn at random. What is the probability of getting a prize?
A. $\frac{1}{10}$
B. $\frac{2}{5}$
C. $\frac{2}{7}$

BHARAT SCHOOL OF BANKING PROBABILITY

D. $\frac{5}{7}$

Answer: Option C

Explanation:

$P($ getting a prize $)=\frac{10}{(10+25)}=\frac{10}{35}=\frac{2}{7}$.
Q.9. From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?
A. $\frac{1}{15}$
B. $\frac{25}{57}$
C. $\frac{35}{256}$
D. $\frac{1}{221}$

Answer: Option D

Explanation:

Let S be the sample space.
Then, $n(\mathrm{~S})={ }^{52} \mathrm{C}_{2}=\frac{(52 \times 51)}{(2 \times 1)}=1326$.
Let $\mathrm{E}=$ event of getting 2 kings out of 4 .
$\therefore n(E)={ }^{4} C_{2}=\frac{(4 \times 3)}{(2 \times 1)}=6$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{6}{1326}=\frac{1}{221}$.
Q.10. Two dice are tossed. The probability that the total score is a prime number is:
A. $\frac{1}{6}$
B. $\frac{5}{12}$

BHARAT SCHOOL OF BANKING PROBABILITY

C. $\frac{1}{2}$
D. $\frac{7}{9}$

Answer: Option B

Explanation:
Clearly, $n(S)=(6 \times 6)=36$.
Let $E=$ Event that the sum is a prime number.
Then $=\{(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(4,1),(4$,
E
3), $(5,2),(5,6),(6,1),(6,5)\}$
$\therefore n(E)=15$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{15}{36}=\frac{5}{12}$.

