BHARAT SCHOOL OF BANKING PIPES AND CISTERN

Question 1

Pipe A can fill a tank in 60 minutes and Pipe B can empty the tank in 120 minutes.How long will they take to fill the tank if both pipes are opened simultaneously ?
a) 120 minutes
b) 30 minutes
c) 60 minutes
d) 45 minutes

Answer: a)120 minutes

Solution:
Pipe A can fill in 1 hour(60 minutes) is $1 / 1$ of the tank.
Pipe B can empty in 1 hour $1 / 2$ of the tank [120 mins $=2 \mathrm{hrs}$]
Both pipes together can fill the tank in 1 hour $=1 / 1-1 / 2=1 / 2$ of the tank.
Since $1 / 2$ part of the tank is filled in 1 hour, the remaining part left is $1 / 2$ of the tank.
The remaining $1 / 2$ part will be filled in other 1 hour.
So both the pipes take 2 hours(120 minutes) to fill the tank.

Question 2

Pipe 1 and pipe 2 can fill a cistern in 2 and 6 hours respectively.Pipe 3 can empty the cistern in 9 hrs.If all the pipes are opened together find the time taken to full the cistern.
a) 1.5 hrs b) $1.4 \mathrm{hrs} \mathrm{c)} 1.8 \mathrm{hrs} \mathrm{d}) 1.6 \mathrm{hrs}$

Answer: c)1.8 hrs

Solution :
Pipe 1 can fill $1 / 2$ of the cistern in 1 hour
Pipe 2 can fill $1 / 6$ of the cistern in 1 hour
Pipe 3 can empty $1 / 9$ of the cistern in 1 hour
Time taken to full the cistern $=1 / 2+1 / 6-1 / 9=5 / 9$
$5 / 9$ of the cistern will be filled in 1 hour.
Full cistern will be filled in $9 / 5 \times 1=1.8$ hours

BHARAT SCHOOL OF BANKING PIPES AND CISTERN

Question 3

Two pipes P and Q can fill a cistern in 8 and 12 minutes respectively. Find the time taken to full the cistern if pipe Q is turned off after 4 minutes.
a) 5.3 minutes
b) 4.5 minutes
c) 5 minutesd) 12 minutes.

Answer : a)5.3 minutes.

Solution:
In 8 mins P can fill the cistern.
Therefore in 1 minute P can fill $1 / 8$ of the cistern.
Similarly Q can fill $1 / 12$ of the cistern in 1 minute
In 4 mins both the pipes can fill $4(1 / 8+1 / 12)$
$4(3+2 / 24)=5 / 6$ part of the cistern
The remaining part to be filled $=1-5 / 6=1 / 6$
Pipe P Minutes
1/8
1
1/6
?
$8 \times 1 / 6=4 / 3=1.3$ minutes .
Already P \& Q opened together for 4 minutes and P alone for 1.3 minutes.
The total time taken to full the tank is $4+1.3=5.3$ minutes.

Question 4

A pipe P alone can fill a tank in 5 hours and pipe Q alone can fill the same tank in 10 hours. If both P and Q are opened together then find the time taken to fill the tank.
a)2 hours
b) $51 / 5$ hours
c) $31 / 3$ hours
d)4 hours

BHARAT SCHOOL OF BANKING PIPES AND CISTERN

Solution :
Pipe P can fill in one hour $=1 / 5$
Pipe Q can fill in one hour $=1 / 10$
Both the Pipe can fill in one hour $=1 / 5+1 / 10=3 / 10$

Tank Filled Time Taken
3/10
1

1
?
$=1 /(10 / 3)$
Therefore both p and q together fill the tank in 10/3 hours.
i.e., 3 1/3 hours.

Question 5

Two pipes A and B Can fill a tank in 12 hours and 1 day respectively. A pipe C can empty the tank in 10 hours. If Pipe C is opened after 3 hours from the pipe $A \& B$ are opened, then find the time taken to full the tank.
a) 24 hoursb) 28 hoursc) 45 hours d) none of these

Answer : b) $\mathbf{2 8}$ hours

Solution :
The part of the tank filled in 1 hour $=1 / 12+1 / 24$
Then, the part filled in 3 hours $=3[1 / 12+1 / 24]=3 / 8$
Remaining part to be filled $=1-3 / 8=5 / 8$
Net part filled in 1 hour when A, B \& C are opened $=1 / 12+1 / 24-1 / 10=1 / 40$
Now, $1 / 40$ part is filled in 1 hour then $5 / 8$ part will be filled in $[40 \times 5 / 8]=25$ hours
Therefore, $3 / 8$ part will be filled in 3 hours and $5 / 8$ part filled in 25 hours.

BHARAT SCHOOL OF BANKING PIPES AND CISTERN

Hence the total time taken to full the tank is 28 hours.

Question 6

Two taps P and Q fill a cistern in 2 days and 3 days respectively and another tap R empties the full cistern in 4 days. If all the taps P, Q and R switched simultaneously then the time taken to fill the cistern is:
a)1day $+120 / 7$ hours b)2days $+12 / 7$ hours c)3days $+24 / 7$ hours d)1day $+121 / 7$ hours

Answer: a)1day + 120/7 hours

Solution :
The tap P can fill a cistern in 1 hour $=1 / 48$ part

The tap Q can fill a cistern in 1 hour $=1 / 72$ part
The tap R can empty a cistern in 1 hour $=1 / 96$ part
Then the net part filled in 1 hour $=1 / 48+1 / 72-1 / 96$
$=7 / 288$
Tank Filled Time Taken
7/288
1
1
?
The cistern will be filled in $=288 / 7$
$288 / 7$ can be expressed as $=(24 \times 7+120) / 7$ hours $=24120 / 7$ hours.
i.e., 1 day and $120 / 7$ hours

Question 7

Two taps can fill a cistern in 30 and 40 minutes respectively. If both the taps are opened simultaneously then the approximate time taken to fill the cistern is:
a) 17 minutes b) 12 minutes c) 19 minutes d) 21 minutes

Answer : a) 17 minutes

BHARAT SCHOOL OF BANKING PIPES AND CISTERN

Solution :

Remember the shortcut method:
"Two pipes A and B can fill (or empty) a tank in X and Y minutes respectively, while working alone. If both the pipes are opened together, then the time taken to fill (or empty) the cistern is given by $\mathrm{XY} /(\mathrm{X}+\mathrm{Y})$ minutes."

Here, $X=30$ minutes and $Y=40$ minutes
Therefore, the required time $=30 \times 40 /(30+40)=1200 / 70=120 / 7=171 / 7$ minutes.

Hence the answer is 17 minutes (approximately)

Question 8

A Pipe P can fill a tank in 16 minutes and the other pipe Q can empty the whole tank in 32 minutes. If both P and Q are opened simultaneouly then the time taken to fill the tank is:
a) 16 minutes
b) 32 minutes
c) 48 minutes
d) 40 minutes

Answer : b) $\mathbf{3 2}$ minutes

Solution :

Let X hours be the time taken to fill a tank by P.
Let Y hours be the time taken to empty the tank by Q .
Then the time taken to fill the tank when P and Q are switched together : $\mathrm{XY} / \mathrm{Y}-\mathrm{X}$ hours.

Here, $X=16$ minutes And $Y=32$ minutes
Therefore required time $=16 \times 32 /(32-16)=32 \times 16 / 16=32$ minutes.

Question 9

Three taps A, B and C are used to fill a cistern. Tap A alone can fill the cistern in 9 minutes. Tap B can fill in 6 minutes and Tap C can fill in 3 minutes. How many minutes will it take to fill this cistern if all the three taps are used simultaneously?

BHARAT SCHOOL OF BANKING PIPES AND CISTERN

a) $23 / 7$
b) $17 / 11$ c) $32 / 11$
d) $56 / 7$

Answer : b) 1 7/11

Solution :

Let the time taken to fill the cistern by 3 taps A, B and C be X, Y, and Z minutes respectively.

Then the short cut formula for,
Time taken to fill the tank when all the pipes are opened $=X Y Z /(X Y+Y Z+Z X)$ minutes
Here, $X=9$ minutes, $Y=6$ minutes and $Z=3$ minutes.
Now the required time $=(9)(6)(3) /(9 \times 6)+(6 \times 3)+(3 \times 9)$ minutes
$=9 \times 6 \times 3 / 54+18+27$
$=9 \times 6 \times 3 / 9\{6+2+3\}=6 \times 3 / 6+2+3=18 / 11=1+7 / 11$ minutes
Hence the answer is $17 / 11$ minutes.

Question 10

Two taps X and Y filled a tank in 22 and 34 minutes respectively. If both X and Y are switched simultaneously then after how much time will the tank get filled?
a) $111 / 14$ minutes
b) $93 / 14$ minutes
c) $135 / 14$ minutes
d) $83 / 14$ minutes

Answer: c) 13 5/14 minutes

Solution :

In these type of questions, we first find part of tank filled in 1 minute by both pipes then we add them to get the result.

Time taken by X to fill the tank $=22$ minutes.
Then, part filled by X in 1 minute $=1 / 22$
Time taken by Y to fill the tank $=34$ minutes.
Then, part filled by Y in 1 minute $=1 / 34$

BHARAT SCHOOL OF BANKING PIPES AND CISTERN

Net part filled by $(X+Y)$ in 1 minute $=1 / 22+1 / 34=(17+11) / 374=28 / 374=14 / 187$.
Time
1 minute
?
Time taken to fill the tank $=187 / 4 \times 1=135 / 14$ minutes.

