BHARAT SCHOOL OF BANKING GEOMETRY

1. If $A B C D$ is a parallelogram in which P and Q are the centroid of triangle $A B D$ and triangle $B C D$, then $P Q$ equals :
A. AQ
B. AP
C. BP
D. DQ
2. Two parallelograms stand on equal bases and between the same parallels. The ratio of their areas is :
A. 1:1
B. 2:1
C. 1:3
D. 1:2
3. $A B C D$ is parallelogram and M is the mid-point of $B C . A B$ and $D M$ are produced to meet at N, then :
A. $A N=3 A B$
B. $A N=2 A B$
C. $A N=3 / 2 A B$
D. None of these
4. Diagonals of a parallelogram are 8 m and 6 m respectively. If one of side is 5 m , then the area of parallelogram is :
A. 18 msq
B. 30 msq
C. 24 msq
D. 48 msq
5. The measures of the angle of quadrilateral taken in order are proportional to $1: 2: 3: 4$ then the quadrilateral is:
A. parallelogram
B. Trapezium
C. Rectangle
D. Rhombus
6. In a parallelogram $A B C D$, bisectors of consecutive angles A and B intersect at P. find the measure of angle APB :
A. 90
B. 60
C. 120
D. data insufficient

BHARAT SCHOOL OF BANKING GEOMETRY

7. The sides of triangle are $12 \mathrm{~cm}, 8 \mathrm{~cm}$ and 6 cm . respectively, the triangle is :
A. acute
B. obtuse
C. right
D. can't determined
8. The point in the plane of a triangle which is at equal perpendicular distance from the sides of the triangle is :
A. Centroid
B. Incentre
C. Circumcentre
D. Orthcentre
9.If D is such a point on the side, $B C$ of triangle $A B C$ that $A B / A C=B D / C D$ then AD must be a/an :
A. altitude of triangleABC
B. median of triangle $A B C$
C. angle bisector of $A B C$
D. perpendicular bisector of $A B C$
9. An angle is 30 more than one half of its complement. find the angle in degree :
A. 60
B. 50
C. 45

ANSWERS AND SOLUTION

BHARAT SCHOOL OF BANKING GEOMETRY

(1) Let $A C$ and $B A$ bisects each other at R, then $A P=2 P R . Q C=2 R Q$.
($\because A R$ and $C R$ are the median of $\triangle A A B$ and $\triangle B A C$)
and $A P=Q C$ and $P R=R Q(\because \triangle A A B \cong \triangle B C A)$
$A P=P Q$
(2) (A) Since their base and perpendicular height
 are bame.
(3) $A D=2 B M$ and $A D \| B M$ from mid-point theorem $\frac{N M}{N A}=\frac{N B}{N A}=\frac{B M}{A A}=\frac{1}{2}$

$$
A N=2 A B
$$

(4) Let $B A=6 \mathrm{~m}$ and $A C=8 \mathrm{~m}$ $A O=4 \mathrm{~m}$ and $B O=3 \mathrm{~m}$
Let $A B=5 \mathrm{~m}$
$\therefore \angle A O B=90^{\circ}$
$\Rightarrow \angle B O C=\angle A O A=\angle A O C=90^{\circ}$

$\therefore B C$ is also 5 m .
Hence, $A B C A$ is a hombus
\therefore Area of rhombus $A B C A=\frac{A C \times B A}{2} \Rightarrow \frac{6 \times 8}{2}=24 \mathrm{~m}^{2}$.
(5) $x+2 x+3 x+4 x=360^{\circ}$
$\Rightarrow x=36^{\circ}$
\therefore The angle of quadrilateral (in order) ar $36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$.
Since opposite angle are supplemmory.

therefore $A B \| C A$ Hence is is a troperium. A
(6)
$\angle A A B=2 x$
$\angle A B C=2 y$
$2 x+2 y=180^{\circ}$
$x+y=90^{\circ}$
i.e, $\angle P A B+\angle P B A=90^{\circ}$

$\angle A P B=90^{\circ}$.
(7) $12^{2}>8^{2}+6^{2} \Rightarrow$ obtuse triangle.
(B)(B)
(9)(c)
(10) Let the angle be x, then its complementry angle be $(90-x)$
$\therefore x-\frac{\left(90^{-x}\right)}{2}=30 \Rightarrow x=50$.

