BHARAT SCHOOL OF BANKING AREA AND PERIMETER

$Q 1 . A B C D$ is a trapezium in which $A B \| C D$ and $A B=2 C D$. If its diagonals intersect each other at O, the ratio of the area of triangle $A O B$ and $C O D$ is:
(a) $1: 2$
(b) $2: 1$
(c) $1: 4$
(d) $4: 1$
(e) None of these

$$
\begin{aligned}
& \text { S1. Ans.(d) } \\
& \text { Sol. } \\
& \Delta \mathrm{OAB}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OE} \\
& =\frac{1}{2} \times 2 \mathrm{CD} \times \mathrm{OE} \\
& =\mathrm{CD} \times \mathrm{OE}
\end{aligned}
$$

$$
\begin{aligned}
& \triangle \mathrm{OCD}=\frac{1}{2} \times \mathrm{CD} \times \mathrm{OF} \\
& \begin{array}{rl}
\therefore \frac{\triangle \mathrm{AOB}}{\triangle C O D} & =\frac{\mathrm{CD} \times \mathrm{OE}}{\frac{1}{2} \times \mathrm{CD} \times O \mathrm{OF}}=\frac{\mathrm{CD} \times 2 \times O \mathrm{OF}}{\frac{2}{2} \times \mathrm{CD} \times O \mathrm{OF}}=\frac{4}{1} \\
\quad 4 & 1
\end{array}
\end{aligned}
$$

Q2. The area of a rectangle is 12 m 2 and its length is 3 times is breadth. What is the perimeter of the rectangle?
(a) 18 m
(b) 24 m
(c) 14 m
(d) Cannot be determined
(e) None of these

S2. Ans.(e)
Sol. Let, the breadth of the rectangle is x metres. Then we have, $x \times 3 x=12$
$\therefore \mathrm{x}=2 \mathrm{~m}$ [Breadth]
And, $3 x=6 \mathrm{~m}$ [Length]

BHARAT SCHOOL OF BANKING AREA AND PERIMETER

Thus the required perimeter
$=2(6+2)=16 \mathrm{~m}$

Q3. The magnitude of the area of a circle is 7 times that of its circumference. What is the circumference (in units) of the circle?
(a) 616
(b) 132
(c) 88
(d) Cannot be determined
(e) None of these

S3. Ans.(c)
Sol. We have $\pi r^{\wedge} 2=7 \times 2 \pi r$
$\therefore r=14$
\therefore Circumference $=2 \pi r=2 \times 22 / 7 \times 14=88$

Q4. In the given figure $A B C$ is an equilateral triangle which is inscribed in a circle of radius r. Which one of the following is the area of the triangle?

(a) $(r-D E)^{1 / 2}(r+D E)^{2}$
(b) $(r-D E)^{2}(r+D E)^{2}$
(c) $(\mathrm{r}-\mathrm{DE})^{1 / 2}(\mathrm{r}+\mathrm{DE})^{3 / 2}$
(d) $(\mathrm{r}+\mathrm{DE})^{1 / 2}(\mathrm{r}-\mathrm{DE})^{3 / 2}$
(e) None of these

BHARAT SCHOOL OF BANKING AREA AND PERIMETER

S4. Ans.(c)
Sol. Area of the $\Delta=\frac{1}{2} \times A E \times B C$
$=\frac{1}{2} \times 2 \times \mathrm{AE} \times \mathrm{BE} \quad \quad \quad$ (Because $\left.\mathrm{BE}=\frac{1}{2} \mathrm{BC}\right)$
$=\mathrm{AE} \times \mathrm{BE}$
$=(\mathrm{AD}+\mathrm{DE}) \times \sqrt{\mathrm{BD}^{2}-\mathrm{DE}^{2}}$
$=(\mathrm{r}+\mathrm{DE}) \times \sqrt{\mathrm{r}^{2}-\mathrm{DE}^{2}}$
$=(\mathrm{r}+\mathrm{DE}) \times(\mathrm{r}-\mathrm{DE})^{1 / 2}(\mathrm{r}+\mathrm{DE})^{1 / 2}$
$=(\mathrm{r}+\mathrm{DE})^{3 / 2} \cdot(\mathrm{r}-\mathrm{DE})^{1 / 2}$

Q5. The radius of a circle is 20% more than the height of a right angled triangle. The base of the right angled triangle is 36 cm . If the area of the right angled triangle is equal to the area of the circle, then what is the approximate area of the circle?
(a) 72 cm 2
(b) 144 cm 2
(c) 216 cm 2
(d) 128 cm 2
(e) None of these

S5. Ans.(a)
Sol. Let, the radius of the circle and the height of the right angled Δ be r and h respectively.
$\therefore \mathrm{r}=\frac{(100+20)}{100} \mathrm{~h}$
And, area of $\Delta=\frac{1}{2} \times \mathrm{h} \times 36=18 \mathrm{~h}$
\therefore Area of the circle $=18 \mathrm{~h}$
$\therefore \mathrm{rr}^{2}=18 \mathrm{~h}$
$\Rightarrow \frac{22}{7} \mathrm{r}^{2}=\frac{18 \times 100 \times \mathrm{r}}{120}$
$\therefore \mathrm{r}=\frac{18 \times 100 \times 7}{120 \times 22}=4.77$
\therefore Area of the circle $=\frac{22}{7} \mathrm{r}^{2}=\frac{22}{7} \times 4.77 \times 4.77$
$=72 \mathrm{~cm}^{2}$ (Approx.)
Directions:(6-7): Study the following diagram to answer the questions.

BHARAT SCHOOL OF BANKING AREA AND PERIMETER

Q6.If the diameter of each circle is 14 cm and $D C=C E$, the area of $\triangle B D E$ is:
(a) $784 \mathrm{~cm}^{\wedge} 2$
(b) $748 \mathrm{~cm}^{\wedge} 2$
(c) $874 \mathrm{~cm}^{\wedge} 2$
(d) $441 \mathrm{~cm}^{\wedge} 2$
(e) None of these

S6. Ans.(a)
Sol. In $\triangle \mathrm{BDE}$
DC $=28 \mathrm{~cm}$ (because diameter of each circle is 14 cm)
Now, DE = DC + CE $=28+28=56 \mathrm{~m}$
And $B C=28 \mathrm{~cm}$
Again, area of $\triangle \mathrm{BDE}$
$=1 / 2 \times D E \times B C=1 / 2 \times 56 \times 28=784 \mathrm{~m}^{\wedge} 2$
Q7. The area of the shaded region of square $A B C D$
(a) $186 \mathrm{~cm}^{\wedge} 2$
(b) $168 \mathrm{~cm}^{\wedge} 2$
(c) $188 \mathrm{~cm}^{\wedge} 2$
(d) $441 \mathrm{~cm}^{\wedge} 2$
(e) None of these

S7. Ans.(b)
Sol. Area of the square $=28 \times 28=784 \mathrm{~cm} 2$
Area of the four circles $=4 \pi r^{\wedge} 2$
$=4 \times 22 / 7 \times 7 \times 7=28 \times 22=616 \mathrm{~m} 2$
\therefore Area of shaded parts $=784-616=168 \mathrm{~cm} 2$
Q8. The smallest side a right-angled triangle is 8 cm less than the side of a square of perimeter 56 cm . The second largest side of the right-angled triangle is 4 cm less than the length of the rectangle of area 96 cm 2 and breadth 8 cm . what is the largest side of the right-angled triangle?
(a) 20 cm
(b) 12 cm
(c) 10 cm
(d) 15 cm
(e) None of these

BHARAT SCHOOL OF BANKING AREA AND PERIMETER

S8. Ans.(c)
Sol. Side of the square $=\frac{56}{4}=14 \mathrm{~cm}$
\therefore Smallest side of the triangle $=14-8=6 \mathrm{~cm}$
Length of the rectangle $=\frac{96}{8}=12 \mathrm{~cm}$
Second largest side of the triangle $=112-4=8 \mathrm{~cm}$
\therefore Largest side of the triangle $=\sqrt{6^{2}+8^{2}}$
$=\sqrt{36+64}=\sqrt{100}=10 \mathrm{~cm}$

Q9. The perimeter of a square is equal to twice the perimeter of a rectangle whose dimensions are: length 8 cm and breadth 7 cm . What is the circumference of a semicircle whose diameter is equal to the side of the square?
(Rounded off of the decimal place)
(a) 38.57 cm
(b) 23.57 cm
(c) 42.46 cm
(d) 47.47 cm
(e) None of these

S9. Ans. (a)
Sol. Perimeter of the rectangle $=2(8+7)=30 \mathrm{~cm}$
Perimeter of the square $=2 \times 30=60 \mathrm{~cm}$
\therefore Side of the square $=1 / 4 \times 60=15 \mathrm{~cm}$
Circumference of the required semi-circle
$=\pi r+2 r=22 / 7 \times 15 / 2+2 \times 15 / 2=38.57 \mathrm{~cm}$

Q10. The length of a rectangular floor is twice its breadth. If Rs. 256 is required to paint the floor at the rate of Rs. 2 per square metre, then what would be the length of floor?
(a) 16 metres
(b) 8 metres
(c) 12 metres
(d) 32 metres
(e) 20 metres

S10. Ans.(a)
Sol. Let the breadth be x .
Then, length $=2 \mathrm{x}$.
$\therefore 2 x^{2}=\frac{256}{2} \Rightarrow x^{2}=64$
$\mathrm{x}=8$
Length $=16 \mathrm{~m}$

BHARAT SCHOOL OF BANKING AREA AND PERIMETER

Read more: http://www.bankersadda.com/p/quant-quiz-area-and-perimeterfor.html\#ixzz4bxFqokJb

